

Index of Applications

Engineering and Physical Sciences

Acceleration, 124, 128, 156, 158, 176, 253, 906
Air pressure, 431
Air traffic control, 154, 745, 650, 850
Aircraft glide path, 193
Angle of elevation, 151, 155, 156
Angular rate of change, 374
Architecture, 694
Area, 116, 126, 153, 256, 603, 674
Asteroid Apollo, 738
Atmospheric pressure and altitude, 327, 353, 951
Automobile aerodynamics, 30
Average speed, 40, 89
Average temperature, 984, 1034
Average velocity, 112
Beam deflection, 693
Beam strength, 35, 222
Billiard balls and normal lines, 927
Boiling temperature, 35
Boyle's Law, 485, 504
Braking load, 774
Breaking strength of a steel cable, 364
Bridge design, 694
Building design, 445, 556, 1008, 1035, 1064
Buoyant force, 501
Cable tension, 757, 765
Capillary action, 1008
Car performance, 35
Carbon dating, 413
Center of mass, of glass, 496
Center of pressure on a sail, 1001
Centripetal acceleration, 850
Centripetal force, 850
Centroid, 494, 495, 502, 519
Chemical mixture problem, 427, 429
Chemical reaction, 391, 422, 550, 962
Circular motion, 840, 848
Comet Hale-Bopp, 741
Construction, 154, 765
Cycloidal motion, 839, 849
Depth
of gasoline in a tank, 503
of water in a swimming pool, 153
of water in a vase, 29
Distance, 241
Einstein's Special Theory of Relativity and Newton's First Law of Motion, 204
Electric circuit, 406, 426, 429
Electric force, 485
Electric force fields, 1041
Electric potential, 878

Electrical charge, 1105
Electrical resistance, 185
Electricity, 155, 303
Electromagnetic theory, 577
Emptying a tank of oil, 481
Error
in volume of a ball bearing, 233
in volume and surface area of a cube, 236
Explorer 18, 694, 741
Explorer 55, 694
Falling object, 34, 315, 426, 429
Ferris wheel, 866
Flow rate, 286, 355, 1105
Fluid force, 541
on a circular plate, 502
of gasoline, 501, 502
on a stern of a boat, 502
in a swimming pool, 504, 506
on a tank wall, 501, 502
of water, 501
Force, 289, 501, 771
Free-falling object, 69, 82, 91
Frictional force, 858, 862
Gauss's Law, 1103
Gravitational fields, 1041
Gravitational force, 577
Halley's comet, 694, 737
Harmonic motion, 36, 38, 138, 353
Heat flux, 1123
Heat transfer, 336
Heat-seeking particle, 921
Heat-seeking path, 926
Height
of a baseball, 29
of a basketball, 32
Highway design, 169, 193, 866
Honeycomb, 169
Horizontal motion, 355
Hyperbolic detection system, 691
Hyperbolic mirror, 695
Ideal Gas Law, 879, 898, 914
Illumination, 222, 241
Inflating balloon, 150
Kepler's Laws, 737, 738, 862
Kinetic and potential energy, 1071, 1074
Law of Conservation of Energy, 1071
Lawn sprinkler, 169
Length, 603
of a catenary, 473, 503
of pursuit, 476
of a stream, 475
Linear and angular velocity, 158
Linear vs. angular speed, 156
Load supports, 765
Lunar gravity, 253
Magnetic field of Earth, 1050

Map of the ocean floor, 926
Mass, 1055, 1061
on the surface of Earth, 486
Maximum area, 219, 220, 221, 222, 224, 240, 242, 949
Maximum cross-sectional area of an irrigation canal, 223
Maximum volume, 221, 222, 223
of a box, 215, 216, 220, 222, 944, 949, 958
of a can buoy, 959
of a package, 222
Minimum length, 218, 221, 222, 240
Minimum surface area, 222
Minimum time, 222, 230
Motion
of a liquid, 1118,1119
of a particle, 712
Moving ladder, 154
Moving shadow, 156, 158, 160
Muzzle velocity, 756, 757
Navigation, 695, 757
Newton's Law of Gravitation, 1041
Orbit of Earth, 708
Orbital speed, 850
Parabolic reflector, 684
Particle motion, 128, 287, 290, 823, 831, 833, 839, 840, 849, 850, 861
Path
of a ball, 838
of a baseball, 837, 838, 860
of a bomb, 839, 865
of a football, 839
of a projectile, 182, 712, 838, 839, 964
of a shot-put throw, 839
Pendulum, 138, 237, 906
Planetary motion, 741
Planetary orbits, 687
Planimeter, 1122
Power, 169, 906
Projectile motion, 237, 675, 705, 757, 836, 838, 839, 847, 849, 850, 860, 865, 913
Radioactive decay, 356, 409, 413, 421, 431
Refraction of light, 959
Refrigeration, 158
Resultant force, 754, 756
Ripples in a pond, 149
Rolling a ball bearing, 185
Satellite antenna, 742
Satellite orbit, 694, 866
Satellites, 127
Sending a space module into orbit, 480, 571
Solar collector, 693
Sound intensity, 40, 327, 414

DERIVATIVES AND INTEGRALS

Basic Differentiation Rules

1. $\frac{d}{d x}[c u]=c u^{\prime}$
2. $\frac{d}{d x}[u \pm v]=u^{\prime} \pm v^{\prime}$
3. $\frac{d}{d x}[u v]=u v^{\prime}+v u^{\prime}$
4. $\frac{d}{d x}\left[\frac{u}{v}\right]=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
5. $\frac{d}{d x}[c]=0$
6. $\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$
7. $\frac{d}{d x}[x]=1$
8. $\frac{d}{d x}[|u|]=\frac{u}{|u|}\left(u^{\prime}\right), \quad u \neq 0$
9. $\frac{d}{d x}[\ln u]=\frac{u^{\prime}}{u}$
10. $\frac{d}{d x}\left[e^{u}\right]=e^{u} u^{\prime}$
11. $\frac{d}{d x}\left[\log _{a} u\right]=\frac{u^{\prime}}{(\ln a) u}$
12. $\frac{d}{d x}\left[a^{u}\right]=(\ln a) a^{u} u^{\prime}$
13. $\frac{d}{d x}[\sin u]=(\cos u) u^{\prime}$
14. $\frac{d}{d x}[\cos u]=-(\sin u) u^{\prime}$
15. $\frac{d}{d x}[\tan u]=\left(\sec ^{2} u\right) u^{\prime}$
16. $\frac{d}{d x}[\cot u]=-\left(\csc ^{2} u\right) u^{\prime}$
17. $\frac{d}{d x}[\sec u]=(\sec u \tan u) u^{\prime}$
18. $\frac{d}{d x}[\csc u]=-(\csc u \cot u) u^{\prime}$
19. $\frac{d}{d x}[\arcsin u]=\frac{u^{\prime}}{\sqrt{1-u^{2}}}$
20. $\frac{d}{d x}[\arccos u]=\frac{-u^{\prime}}{\sqrt{1-u^{2}}}$
21. $\frac{d}{d x}[\arctan u]=\frac{u^{\prime}}{1+u^{2}}$
22. $\frac{d}{d x}[\operatorname{arccot} u]=\frac{-u^{\prime}}{1+u^{2}}$
23. $\frac{d}{d x}[\operatorname{arcsec} u]=\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}}$
24. $\frac{d}{d x}[\operatorname{arccsc} u]=\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}$
25. $\frac{d}{d x}[\sinh u]=(\cosh u) u^{\prime}$
26. $\frac{d}{d x}[\cosh u]=(\sinh u) u^{\prime}$
27. $\frac{d}{d x}[\tanh u]=\left(\operatorname{sech}^{2} u\right) u^{\prime}$
28. $\frac{d}{d x}[\operatorname{coth} u]=-\left(\operatorname{csch}^{2} u\right) u^{\prime}$
29. $\frac{d}{d x}[\operatorname{sech} u]=-(\operatorname{sech} u \tanh u) u^{\prime}$
30. $\frac{d}{d x}[\operatorname{csch} u]=-(\operatorname{csch} u \operatorname{coth} u) u^{\prime}$
31. $\frac{d}{d x}\left[\sinh ^{-1} u\right]=\frac{u^{\prime}}{\sqrt{u^{2}+1}}$
32. $\frac{d}{d x}\left[\cosh ^{-1} u\right]=\frac{u^{\prime}}{\sqrt{u^{2}-1}}$
33. $\frac{d}{d x}\left[\tanh ^{-1} u\right]=\frac{u^{\prime}}{1-u^{2}}$
34. $\frac{d}{d x}\left[\operatorname{coth}^{-1} u\right]=\frac{u^{\prime}}{1-u^{2}}$
35. $\frac{d}{d x}\left[\operatorname{sech}^{-1} u\right]=\frac{-u^{\prime}}{u \sqrt{1-u^{2}}}$
36. $\frac{d}{d x}\left[\operatorname{csch}^{-1} u\right]=\frac{-u^{\prime}}{|u| \sqrt{1+u^{2}}}$

Basic Integration Formulas

1. $\int k f(u) d u=k \int f(u) d u$
2. $\int[f(u) \pm g(u)] d u=\int f(u) d u \pm \int g(u) d u$
3. $\int d u=u+C$
4. $\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1$
5. $\int \frac{d u}{u}=\ln |u|+C$
6. $\int e^{u} d u=e^{u}+C$
7. $\int a^{u} d u=\left(\frac{1}{\ln a}\right) a^{u}+C$
8. $\int \sin u d u=-\cos u+C$
9. $\int \cos u d u=\sin u+C$
10. $\int \tan u d u=-\ln |\cos u|+C$
11. $\int \cot u d u=\ln |\sin u|+C$
12. $\int \sec u d u=\ln |\sec u+\tan u|+C$
13. $\int \csc u d u=-\ln |\csc u+\cot u|+C$
14. $\int \sec ^{2} u d u=\tan u+C$
15. $\int \csc ^{2} u d u=-\cot u+C$
16. $\int \sec u \tan u d u=\sec u+C$
17. $\int \csc u \cot u d u=-\csc u+C$
18. $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C$
19. $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C$
20. $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C$

TRIGONOMETRY

Definition of the Six Trigonometric Functions

Right triangle definitions, where $0<\theta<\pi / 2$.
 $\begin{array}{ll}\sin \theta=\frac{\text { opp }}{\text { hyp }} & \csc \theta=\frac{\text { hyp }}{\text { opp }} \\ \cos \theta=\frac{\text { adj }}{\text { hyp }} & \sec \theta=\frac{\text { hyp }}{\text { adj }} \\ \tan \theta=\frac{\text { opp }}{\text { adj }} & \cot \theta=\frac{\text { adj }}{\text { opp }}\end{array}$
Circular function definitions, where θ is any angle.

$$
\begin{aligned}
\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\
\cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\
\tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}
\end{aligned}
$$

Reciprocal Identities

$\sin x=\frac{1}{\csc x} \quad \sec x=\frac{1}{\cos x} \quad \tan x=\frac{1}{\cot x}$
$\csc x=\frac{1}{\sin x} \quad \cos x=\frac{1}{\sec x} \quad \cot x=\frac{1}{\tan x}$

Quotient Identities

$\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}$

Pythagorean Identities

$\sin ^{2} x+\cos ^{2} x=1$
$1+\tan ^{2} x=\sec ^{2} x \quad 1+\cot ^{2} x=\csc ^{2} x$

Cofunction Identities

$\sin \left(\frac{\pi}{2}-x\right)=\begin{array}{ll}\cos x & \cos \left(\frac{\pi}{2}-x\right)=\sin x\end{array}$
$\csc \left(\frac{\pi}{2}-x\right)=\sec x \quad \tan \left(\frac{\pi}{2}-x\right)=\cot x$
$\sec \left(\frac{\pi}{2}-x\right)=\csc x \quad \cot \left(\frac{\pi}{2}-x\right)=\tan x$

Even/Odd Identities

$\sin (-x)=-\sin x \quad \cos (-x)=\cos x$
$\csc (-x)=-\csc x \quad \tan (-x)=-\tan x$
$\sec (-x)=\sec x \quad \cot (-x)=-\cot x$

Sum and Difference Formulas

$\sin (u \pm v)=\sin u \cos v \pm \cos u \sin v$ $\cos (u \pm v)=\cos u \cos v \mp \sin u \sin v$ $\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$

Double-Angle Formulas

$\sin 2 u=2 \sin u \cos u$
$\cos 2 u=\cos ^{2} u-\sin ^{2} u=2 \cos ^{2} u-1=1-2 \sin ^{2} u$ $\tan 2 u=\frac{2 \tan u}{1-\tan ^{2} u}$

Power-Reducing Formulas

$\sin ^{2} u=\frac{1-\cos 2 u}{2}$
$\cos ^{2} u=\frac{1+\cos 2 u}{2}$
$\tan ^{2} u=\frac{1-\cos 2 u}{1+\cos 2 u}$

Sum-to-Product Formulas

$\sin u+\sin v=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\sin u-\sin v=2 \cos \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$
$\cos u+\cos v=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\cos u-\cos v=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$

Product-to-Sum Formulas

$\sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$
$\cos u \cos v=\frac{1}{2}[\cos (u-v)+\cos (u+v)]$
$\sin u \cos v=\frac{1}{2}[\sin (u+v)+\sin (u-v)]$
$\cos u \sin v=\frac{1}{2}[\sin (u+v)-\sin (u-v)]$

Calculus
 10e

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN\#, author, title, or keyword for materials in your areas of interest.

Calculus
 10e

Ron Larson

The Pennsylvania State University The Behrend College

Bruce Edwards

University of Florida

CENGAGE Learning

Calculus

Tenth Edition

Ron Larson

Publisher: Liz Covello
Senior Development Editor: Carolyn Lewis
Assistant Editor: Liza Neustaetter
Editorial Assistant: Stephanie Kreuz
Associate Media Editor: Guanglei Zhang
Senior Content Project Manager: Jessica Rasile Art Director: Linda May
Rights Acquisition Specialist: Shalice Shah-Caldwell
Manufacturing Planner: Doug Bertke Text/Cover Designer: Larson Texts, Inc.
Compositor: Larson Texts, Inc.
Cover Image: Larson Texts, Inc.
© 2014, 2010, 2006 Brooks/Cole, Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be emailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2012948320
ISBN-13: 978-1-285-05709-5
ISBN-10: 1-285-05709-0

Brooks/Cole

20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com.
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

Instructors: Please visit login.cengage.com and log in to access instructor-specific resources.

Printed in the United States of America
12345671615141312

Contents

P \triangleright Preparation for Calculus 1
P. 1 Graphs and Models 2
P. 2 Linear Models and Rates of Change 10
P. 3 Functions and Their Graphs 19
P. 4 Fitting Models to Data 31
Review Exercises 37
P.S. Problem Solving 39
$1 \triangleright$ Limits and Their Properties 41
1.1 A Preview of Calculus 42
1.2 Finding Limits Graphically and Numerically 48
1.3 Evaluating Limits Analytically 59
1.4 Continuity and One-Sided Limits 70
1.5 Infinite Limits 83
Section Project: Graphs and Limits of Trigonometric Functions 90
Review Exercises 91
P.S. Problem Solving 93
$2 \triangleright$ Differentiation 95
2.1 The Derivative and the Tangent Line Problem 96
2.2 Basic Differentiation Rules and Rates of Change 106
2.3 Product and Quotient Rules and Higher-Order Derivatives 118
2.4 The Chain Rule 129
2.5 Implicit Differentiation 140
Section Project: Optical Illusions 147
2.6 Related Rates 148
Review Exercises 157
P.S. Problem Solving 159
$3 \triangleright$ Applications of Differentiation 161
3.1 Extrema on an Interval 162
3.2 Rolle's Theorem and the Mean Value Theorem 170
3.3 Increasing and Decreasing Functions andthe First Derivative Test177
Section Project: Rainbows 186
3.4 Concavity and the Second Derivative Test 187
3.5 Limits at Infinity 195
3.6 A Summary of Curve Sketching 206
3.7 Optimization Problems 215
Section Project: Connecticut River 224
3.8 Newton's Method 225
3.9 Differentials 231
Review Exercises 238
P.S. Problem Solving 241
4 Integration 243
4.1 Antiderivatives and Indefinite Integration 244
4.2 Area 254
4.3 Riemann Sums and Definite Integrals 266
4.4 The Fundamental Theorem of Calculus 277
Section Project: Demonstrating the Fundamental Theorem 291
4.5 Integration by Substitution 292
4.6 Numerical Integration 305
Review Exercises 312
P.S. Problem Solving 315
$5 \triangleright$ Logarithmic, Exponential, and Other Transcendental Functions317
5.1 The Natural Logarithmic Function: Differentiation 318
5.2 The Natural Logarithmic Function: Integration 328
5.3 Inverse Functions 337
5.4 Exponential Functions: Differentiation and Integration 346
5.5 Bases Other than e and Applications 356
Section Project: Using Graphing Utilities to Estimate Slope 365
5.6 Inverse Trigonometric Functions: Differentiation 366
5.7 Inverse Trigonometric Functions: Integration 375
5.8 Hyperbolic Functions 383
Section Project: St. Louis Arch 392
Review Exercises 393
P.S. Problem Solving 395
$6 \triangleright$ Differential Equations 397
6.1 Slope Fields and Euler's Method 398
6.2 Differential Equations: Growth and Decay 407
6.3 Separation of Variables and the Logistic Equation 415
6.4 First-Order Linear Differential Equations 424
Section Project: Weight Loss 430
Review Exercises 431
P.S. Problem Solving 433
7 - Applications of Integration 435
7.1 Area of a Region Between Two Curves 436
7.2 Volume:The Disk Method 446
7.3 Volume: The Shell Method 457
Section Project: Saturn 465
7.4 Arc Length and Surfaces of Revolution 466
7.5 Work 477
Section Project:Tidal Energy 485
7.6 Moments, Centers of Mass, and Centroids 486
7.7 Fluid Pressure and Fluid Force 497
Review Exercises 503
P.S. Problem Solving 505
8 - Integration Techniques, L'Hopital's Rule,and Improper Integrals507
8.1 Basic Integration Rules 508
8.2 Integration by Parts 515
8.3 Trigonometric Integrals 524
Section Project: Power Lines 532
8.4 Trigonometric Substitution 533
8.5 Partial Fractions 542
8.6 Integration by Tables and Other Integration Techniques 551
8.7 Indeterminate Forms and L'Hopital's Rule 557
8.8 Improper Integrals 568
Review Exercises 579
P.S. Problem Solving 581
$9 \triangleright$ Infinite Series 583
9.1 Sequences 584
9.2 Series and Convergence 595
Section Project: Cantor's Disappearing Table 604
9.3 The Integral Test and p-Series 605
Section Project: The Harmonic Series 611
9.4 Comparisons of Series 612
Section Project: Solera Method 618
9.5 Alternating Series 619
9.6 The Ratio and Root Tests 627
9.7 Taylor Polynomials and Approximations 636
9.8 Power Series 647
9.9 Representation of Functions by Power Series 657
9.10 Taylor and Maclaurin Series 664
Review Exercises 676
P.S. Problem Solving 679
$10 \triangleright$ Conics, Parametric Equations, and Polar Coordinates 681
10.1 Conics and Calculus 682
10.2 Plane Curves and Parametric Equations 696
Section Project: Cycloids 705
10.3 Parametric Equations and Calculus 706
10.4 Polar Coordinates and Polar Graphs 715
Section Project: Anamorphic Art 724
10.5 Area and Arc Length in Polar Coordinates 725
10.6 Polar Equations of Conics and Kepler's Laws 734
Review Exercises 742
P.S. Problem Solving 745
$11>$ Vectors and the Geometry of Space 747
11.1 Vectors in the Plane 748 748
11.2 Space Coordinates and Vectors in Space 758
11.3 The Dot Product of Two Vectors 766
11.4 The Cross Product of Two Vectors in Space 775
11.5 Lines and Planes in Space 783
Section Project: Distances in Space 793
11.6 Surfaces in Space 794
11.7 Cylindrical and Spherical Coordinates 804
Review Exercises 811
P.S. Problem Solving 813
$12 \triangleright$ Vector-Valued Functions 815
12.1 Vector-Valued Functions 816
Section Project: Witch of Agnesi 823
12.2 Differentiation and Integration of Vector-Valued Functions 824
12.3 Velocity and Acceleration 832
12.4 Tangent Vectors and Normal Vectors 841
12.5 Arc Length and Curvature 851
Review Exercises 863
P.S. Problem Solving 865
$13 \triangleright$ Functions of Several Variables 867
13.1 Introduction to Functions of Several Variables 868
13.2 Limits and Continuity 880
13.3 Partial Derivatives 890
Section Project: Moiré Fringes 899
13.4 Differentials 900
13.5 Chain Rules for Functions of Several Variables 907
13.6 Directional Derivatives and Gradients 915
13.7 Tangent Planes and Normal Lines 927
Section Project: Wildflowers 935
13.8 Extrema of Functions of Two Variables 936
13.9 Applications of Extrema 944
Section Project: Building a Pipeline 951
13.10 Lagrange Multipliers 952
Review Exercises 960
P.S. Problem Solving 963
$14>$ Multiple Integration 965
14.1 Iterated Integrals and Area in the Plane 966
14.2 Double Integrals and Volume 974
14.3 Change of Variables: Polar Coordinates 986
14.4 Center of Mass and Moments of Inertia 994
Section Project: Center of Pressure on a Sail 1001
14.5 Surface Area 1002
Section Project: Capillary Action 1008
14.6 Triple Integrals and Applications 1009
14.7 Triple Integrals in Other Coordinates 1020
Section Project: Wrinkled and Bumpy Spheres 1026
14.8 Change of Variables: Jacobians 1027
Review Exercises 1034
P.S. Problem Solving 1037
$15 \triangleright$ Vector Analysis 1039
15.1 Vector Fields 1040
15.2 Line Integrals 1051
15.3 Conservative Vector Fields and Independence of Path 1065
15.4 Green's Theorem 1075
Section Project: Hyperbolic and Trigonometric Functions 1083
15.5 Parametric Surfaces 1084
15.6 Surface Integrals 1094
Section Project: Hyperboloid of One Sheet 1105
15.7 DivergenceTheorem 1106
15.8 Stokes's Theorem 1114
Review Exercises 1120
Section Project: The Planimeter 1122
P.S. Problem Solving 1123
Appendices
Appendix A: Proofs of Selected Theorems A2
Appendix B: Integration Tables A3
Appendix C: Precalculus Review (Web)*
C. 1 Real Numbers and the Real Number Line
C. 2 The Cartesian Plane
C. 3 Review of Trigonometric Functions
Appendix D: Rotation and the General Second-Degree Equation (Web)*
Appendix E: Complex Numbers (Web)*
Appendix F: Business and Economic Applications (Web)*
Answers to All Odd-Numbered Exercises and Tests A7
Index A115
*Available at the text-specific website www.cengagebrain.com

Preface

Welcome to Calculus, Tenth Edition. We are proud to present this new edition to you. As with all editions, we have been able to incorporate many useful comments from you, our user. For this edition, we have introduced some new features and revised others. You will still find what you expect - a pedagogically sound, mathematically precise, and comprehensive textbook.

We are pleased and excited to offer you something brand new with this edition a companion website at LarsonCalculus.com. This site offers many resources that will help you as you study calculus. All of these resources are just a click away.

Our goal for every edition of this textbook is to provide you with the tools you need to master calculus. We hope that you find the changes in this edition, together with LarsonCalculus.com, will accomplish just that.

In each exercise set, be sure to notice the reference to CalcChat.com. At this free site, you can download a step-by-step solution to any odd-numbered exercise. Also, you can talk to a tutor, free of charge, during the hours posted at the site. Over the years, thousands of students have visited the site for help. We use all of this information to help guide each revision of the exercises and solutions.

New To This Edition

NEW LarsonCalculus.com

This companion website offers multiple tools and resources to supplement your learning. Access to these features is free. Watch videos explaining concepts or proofs from the book, explore examples, view three-dimensional graphs, download articles from math journals and much more.

NEW Chapter Opener

Each Chapter Opener highlights real-life applications used in the examples and exercises.

NEW Interactive Examples

Examples throughout the book are accompanied by Interactive Examples at LarsonCalculus.com. These interactive examples use Wolfram's free CDF Player and allow you to explore calculus by manipulating functions or graphs, and observing the results.

NEW Proof Videos

Watch videos of co-author Bruce Edwards as he explains the proofs of theorems in Calculus, Tenth Edition at LarsonCalculus.com.

NEW How Do You See It?

The How Do You See It? feature in each section presents a real-life problem that you will solve by visual inspection using the concepts learned in the lesson. This exercise is excellent for classroom discussion or test preparation.

REVISED Remark

These hints and tips reinforce or expand upon concepts, help you learn how to study mathematics, caution you about common errors, address special cases, or show alternative or additional steps to a solution of an example.

REVISED Exercise Sets

The exercise sets have been carefully and extensively examined to ensure they are rigorous and relevant and include all topics our users have suggested. The exercises have been reorganized and titled so you can better see the connections between examples and exercises. Multi-step, real-life exercises reinforce problem-solving skills and mastery of concepts by giving students the opportunity to apply the concepts in real-life situations.

HOW DO YOU SEE IT? The figure shows the graphs of the position, velocity, and acceleration functions of a particle.

(a) Copy the graphs of the functions shown. Identify each graph. Explain your reasoning. To print an enlarged copy of the graph, go to MathGraphs.com
(b) On your sketch, identify when the particle speeds up and when it slows down. Explain your reasoning.

Table of Content Changes

Appendix A (Proofs of Selected Theorems) now appears in video format at LarsonCalculus.com. The proofs also appear in text form at CengageBrain.com.

Trusted Features

Applications

Carefully chosen applied exercises and examples are included throughout to address the question, "When will I use this?" These applications are pulled from diverse sources, such as current events, world data, industry trends, and more, and relate to a wide range of interests. Understanding where calculus is (or can be) used promotes fuller understanding of the material.

Writing about Concepts

Writing exercises at the end of each section are designed to test your understanding of basic concepts in each section, encouraging you to verbalize and write answers and promote technical communication skills that will be invaluable in your future careers.

Theorems

Theorems provide the conceptual framework for calculus. Theorems are clearly stated and separated from the rest of the text by boxes for quick visual reference. Key proofs often follow the theorem and can be found at LarsonCalculus.com.

Definition of Definite Integral

If f is defined on the closed interval $[a, b]$ and the limit of Riemann sums over partitions Δ

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

exists (as described above), then f is said to be integrable on $[a, b]$ and the limit is denoted by

$$
\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x .
$$

The limit is called the definite integral of f from a to b. The number a is the lower limit of integration, and the number b is the upper limit of integration.

Definitions

As with theorems, definitions are clearly stated using precise, formal wording and are separated from the text by boxes for quick visual reference.

Explorations

Explorations provide unique challenges to study concepts that have not yet been formally covered in the text. They allow you to learn by discovery and introduce topics related to ones presently being studied. Exploring topics in this way encourages you to think outside the box.

Historical Notes and Biographies

Historical Notes provide you with background information on the foundations of calculus. The Biographies introduce you to the people who created and contributed to calculus.

Technology

Throughout the book, technology boxes show you how to use technology to solve problems and explore concepts of calculus. These tips also point out some pitfalls of using technology.

Section Projects

Projects appear in selected sections and encourage you to explore applications related to the topics you are studying. They provide an interesting and engaging way for you and other students to work and investigate ideas collaboratively.

Putnam Exam Challenges

Putnam Exam questions appear in selected sections. These actual Putnam Exam questions will challenge you and push the limits of your understanding of calculus.

SECTION PROJECT

St. Louis Arch

The Gateway Arch in St. Louis, Missouri, was constructed using the hyperbolic cosine function. The equation used for construction was
$y=693.8597-68.7672 \cosh 0.0100333 x$,
$-299.2239 \leq x \leq 299.2239$
where x and y are measured in feet. Cross sections of the arch are equilateral triangles, and (x, y) traces the path of the centers of mass of the cross-sectional triangles. For each value of x, the area of the cross-sectional triangle is
$A=125.1406 \cosh 0.0100333 x$.
(Source: Owner's Manual for the Gateway Arch, Saint Louis, MO, by William Thayer)
(a) How high above the ground is the center of the highest triangle? (At ground level, $y=0$.)
(b) What is the height of the arch? (Hint: For an equilateral
 triangle, $A=\sqrt{3} c^{2}$, where c is one-half the base of the triangle, and the center of mass of the triangle is located at two-thirds the height of the triangle.)
(c) How wide is the arch at ground level?

Student Resources

\author{

- Student Solutions Manual for Calculus of a Single Variable (Chapters P-10 of Calculus): ISBN 1-285-08571-X
}

Student Solutions Manual for Multivariable Calculus (Chapters 11-16 of Calculus): ISBN 1-285-08575-2

These manuals contain worked-out solutions for all odd-numbered exercises.

anhict
 WebAssign www.webassign.net

Printed Access Card: ISBN 0-538-73807-3
Online Access Code: ISBN 1-285-18421-1
Enhanced WebAssign is designed for you to do your homework online. This proven and reliable system uses pedagogy and content found in this text, and then enhances it to help you learn calculus more effectively. Automatically graded homework allows you to focus on your learning and get interactive study assistance outside of class. Enhanced WebAssign for Calculus, 10e contains the Cengage YouBook, an interactive eBook that contains video clips, highlighting and note-taking features, and more!

```
CourseMate
```

CourseMate is a perfect study tool for bringing concepts to life with interactive learning, study, and exam preparation tools that support the printed textbook. CourseMate includes: an interactive eBook, videos, quizzes, flashcards, and more!

- CengageBrain.com-To access additional materials including CourseMate, visit www.cengagebrain.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where these resources can be found.

Instructor Resources

NHANCED

WebAssign www.webassign.net
Exclusively from Cengage Learning, Enhanced WebAssign offers an extensive online program for Calculus, 10e to encourage the practice that is so critical for concept mastery. The meticulously crafted pedagogy and exercises in our proven texts become even more effective in Enhanced WebAssign, supplemented by multimedia tutorial support and immediate feedback as students complete their assignments. Key features include:

- Thousands of homework problems that match your textbook's end-of-section exercises
- Opportunities for students to review prerequisite skills and content both at the start of the course and at the beginning of each section
- Read It eBook pages, Watch It Videos, Master It tutorials, and Chat About It links
- A customizable Cengage YouBook with highlighting, note-taking, and search features, as well as links to multimedia resources
- Personal Study Plans (based on diagnostic quizzing) that identify chapter topics that students will need to master
- A WebAssign Answer Evaluator that recognizes and accepts equivalent mathematical responses in the same way you grade assignments
- A Show My Work feature that gives you the option of seeing students' detailed solutions
- Lecture videos, and more!
- Cengage Customizable YouBook-YouBook is an eBook that is both interactive and customizable! Containing all the content from Calculus, 10e, YouBook features a text edit tool that allows you to modify the textbook narrative as needed. With YouBook, you can quickly re-order entire sections and chapters or hide any content you don't teach to create an eBook that perfectly matches your syllabus. You can further customize the text by adding instructor-created or YouTube video links. Additional media assets include: video clips, highlighting and note-taking features, and more! YouBook is available within Enhanced WebAssign.
- Complete Solutions Manual for Calculus of a Single Variable, Volume 1 (Chapters P-6 of Calculus): ISBN 1-285-08576-0

Complete Solutions Manual for Calculus of a Single Variable, Volume 2 (Chapters 7-10 of Calculus): ISBN 1-285-08577-9

Complete Solutions Manual for Multivariable Calculus

(Chapters 11-16 of Calculus): ISBN 1-285-08580-9
The Complete Solutions Manuals contain worked-out solutions to all exercises in the text.

- Solution Builder (www.cengage.com/solutionbuilder)— This online instructor database offers complete worked-out solutions to all exercises in the text, allowing you to create customized, secure solutions printouts (in PDF format) matched exactly to the problems you assign in class.
- PowerLecture (ISBN 1-285-08583-3)—This comprehensive instructor DVD includes resources such as an electronic version of the Instructor's Resource Guide, complete pre-built PowerPoint ${ }^{\circledR}$ lectures, all art from the text in both jpeg and PowerPoint formats, ExamView® algorithmic computerized testing software, JoinIn ${ }^{\mathrm{TM}}$ content for audience response systems (clickers), and a link to Solution Builder.
- ExamView Computerized Testing- Create, deliver, and customize tests in print and online formats with ExamView®, an easy-to-use assessment and tutorial software. ExamView for Calculus, 10e contains hundreds of algorithmic multiplechoice and short answer test items. ExamView ${ }^{\circledR}$ is available on the PowerLecture DVD.
- Instructor's Resource Guide (ISBN 1-285-09074-8)—This robust manual contains an abundance of resources keyed to the textbook by chapter and section, including chapter summaries and teaching strategies. An electronic version of the Instructor's Resource Guide is available on the PowerLecture DVD.

-CourseMate

CourseMate is a perfect study tool for students, and requires no set up from you. CourseMate brings course concepts to life with interactive learning, study, and exam preparation tools that support the printed textbook. CourseMate for Calculus, 10e includes: an interactive eBook, videos, quizzes, flashcards, and more! For instructors, CourseMate includes Engagement Tracker, a first-of-its kind tool that monitors student engagement.

- CengageBrain.com-To access additional course materials including CourseMate, please visit http://login.cengage.com. At the CengageBrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where these resources can be found.

We would like to thank the many people who have helped us at various stages of Calculus over the last 39 years. Their encouragement, criticisms, and suggestions have been invaluable.

Reviewers of the Tenth Edition

Denis Bell, University of Northern Florida; Abraham Biggs, Broward Community College; Jesse Blosser, Eastern Mennonite School; Mark Brittenham, University of Nebraska; Mingxiang Chen, North Carolina A \& T State University; Marcia Kleinz, Atlantic Cape Community College; Maxine Lifshitz, Friends Academy; Bill Meisel, Florida State College at Jacksonville; Martha Nega, Georgia Perimeter College; Laura Ritter, Southern Polytechnic State University; Chia-Lin Wu, Richard Stockton College of New Jersey

Reviewers of Previous Editions

Stan Adamski, Owens Community College; Alexander Arhangelskii, Ohio University; Seth G. Armstrong, Southern Utah University; Jim Ball, Indiana State University; Marcelle Bessman, Jacksonville University; Linda A. Bolte, Eastern Washington University; James Braselton, Georgia Southern University; Harvey Braverman, Middlesex County College; Tim Chappell, Penn Valley Community College; Oiyin Pauline Chow, Harrisburg Area Community College; Julie M. Clark, Hollins University; P.S. Crooke, Vanderbilt University; Jim Dotzler, Nassau Community College; Murray Eisenberg, University of Massachusetts at Amherst; Donna Flint, South Dakota State University; Michael Frantz, University of La Verne; Sudhir Goel, Valdosta State University; Arek Goetz, San Francisco State University; Donna J. Gorton, Butler County Community College; John Gosselin, University of Georgia; Shahryar Heydari, Piedmont College; Guy Hogan, Norfolk State University; Ashok Kumar, Valdosta State University; Kevin J. Leith, Albuquerque Community College; Douglas B. Meade, University of South Carolina; Teri Murphy, University of Oklahoma; Darren Narayan, Rochester Institute of Technology; Susan A. Natale, The Ursuline School, NY; Terence H. Perciante, Wheaton College; James Pommersheim, Reed College; Leland E. Rogers, Pepperdine University; Paul Seeburger, Monroe Community College; Edith A. Silver, Mercer County Community College; Howard Speier, Chandler-Gilbert Community College; Desmond Stephens, Florida A\&M University; Jianzhong Su, University of Texas at Arlington; Patrick Ward, Illinois Central College; Diane Zych, Erie Community College

Many thanks to Robert Hostetler, The Behrend College, The Pennsylvania State University, and David Heyd, The Behrend College, The Pennsylvania State University, for their significant contributions to previous editions of this text.

We would also like to thank the staff at Larson Texts, Inc., who assisted in preparing the manuscript, rendering the art package, typesetting, and proofreading the pages and supplements.

On a personal level, we are grateful to our wives, Deanna Gilbert Larson and Consuelo Edwards, for their love, patience, and support. Also, a special note of thanks goes out to R. Scott O'Neil.

If you have suggestions for improving this text, please feel free to write to us. Over the years we have received many useful comments from both instructors and students, and we value these very much.

Your Course. Your Way.

Calculus Textbook Options

The traditional calculus course is available in a variety of textbook configurations to address the different ways instructors teach-and students take-their classes.

The book can be customized to meet your individual needs and is available through CengageBrain.com.

TOPICS COVERED	APPROACH			
	Late Transcendental Functions	Early Transcendental Functions	Accelerated coverage	Integrated coverage
3-semester	Calculus 10 e CALCULUS ? nontorson Rnue Fixants	Calculus Early Transcendental Functions 5e	Essential Calculus	
Single Variable Only	Calculus $10 e$ Single Variable CALCULUS OF A SINGLE VARIABLE	Calculus: Early Transcendental Functions 5e Single Variable		Calculus I with Precalculus 3e C A L C ULUS I WITH PRECALCULUS
Multivariable	Calculus 10e Multivariable CALCULUS \longrightarrow	Calculus 10e Multivariable GALCULUS		
Custom All of these textbook choices can be customized to fit the individual needs of your course.	Calculus 10e CALCULUS	Calculus: Early Transcendental Functions 5e	Essential Calculus ESSENTAL CALCTIUS men mwantio	Calculus I with Precalculus 3e C A L C ULUS I WITH PRECALCULUS

Calculus

10e

P

Preparation for Calculus

Graphs and Models
P. 2 Linear Models and Rates of Change
P. 3 Functions and Their Graphs
P. 4 Fitting Models to Data

Automobile Aerodynamics (Exercise 96, p. 30)

Conveyor Design (Exercise 23, p. 16)
$\cdot \square$

Cell Phone Subscribers (Exercise 68, p. 9)

Modeling Carbon Dioxide Concentration (Example 6, p. 7)

P. 1 Graphs and Models

RENÉ DESCARTES (1596-1650)
Descartes made many contributions to philosophy, science, and mathematics. The idea of representing points in the plane by pairs of real numbers and representing curves in the plane by equations was described by Descartes in his book La Géométrie, published in 1637. See LarsonCalculus.com to read more of this biography.

The parabola $y=x^{2}-2$
Figure P. 2

```
- Sketch the graph of an equation.
- Find the intercepts of a graph.
- Test a graph for symmetry with respect to an axis and the origin.
- Find the points of intersection of two graphs.
- Interpret mathematical models for real-life data.
```


The Graph of an Equation

In 1637, the French mathematician René Descartes revolutionized the study of mathematics by combining its two major fields-algebra and geometry. With Descartes's coordinate plane, geometric concepts could be formulated analytically and algebraic concepts could be viewed graphically. The power of this approach was such that within a century of its introduction, much of calculus had been developed.

The same approach can be followed in your study of calculus. That is, by viewing calculus from multiple perspectives-graphically, analytically, and numerically-you will increase your understanding of core concepts.

Consider the equation $3 x+y=7$. The point $(2,1)$ is a solution point of the equation because the equation is satisfied (is true) when 2 is substituted for x and 1 is substituted for y. This equation has many other solutions, such as $(1,4)$ and $(0,7)$. To find other solutions systematically, solve the original equation for y.

$$
y=7-3 x
$$

Analytic approach

Then construct a table of values by substituting several values of x.

x	0	1	2	3	4
y	7	4	1	-2	-5

Numerical approach

From the table, you can see that $(0,7),(1,4),(2,1)$, $(3,-2)$, and $(4,-5)$ are solutions of the original equation $3 x+y=7$. Like many equations, this equation has an infinite number of solutions. The set of all solution points is the graph of the equation, as shown in Figure P.1. Note that the sketch shown in Figure P. 1 is referred to as the graph of $3 x+y=7$, even though it really represents only a portion of the graph. The entire graph would extend beyond the page.

In this course, you will study many sketching techniques. The simplest is point plotting-that is,

Graphical approach: $3 x+y=7$
Figure P. 1 you plot points until the basic shape of the graph seems apparent.

EXAMPLE 1 Sketching a Graph by Point Plotting

To sketch the graph of $y=x^{2}-2$, first construct a table of values. Next, plot the points shown in the table. Then connect the points with a smooth curve, as shown in Figure P.2. This graph is a parabola. It is one of the conics you will study in Chapter 10.

x	-2	-1	0	1	2	3
y	2	-1	-2	-1	2	7

Exploration

Comparing Graphical and Analytic Approaches Use a graphing utility to graph each equation. In each case, find a viewing window that shows the important characteristics of the graph.
a. $y=x^{3}-3 x^{2}+2 x+5$
b. $y=x^{3}-3 x^{2}+2 x+25$
c. $y=-x^{3}-3 x^{2}+20 x+5$
d. $y=3 x^{3}-40 x^{2}+50 x-45$
e. $y=-(x+12)^{3}$
f. $y=(x-2)(x-4)(x-6)$

A purely graphical approach to this problem would involve a simple "guess, check, and revise" strategy. What types of things do you think an analytic approach might involve? For instance, does the graph have symmetry? Does the graph have turns? If so, where are they? As you proceed through Chapters 1, 2, and 3 of this text, you will study many new analytic tools that will help you analyze graphs of equations such as these.

One disadvantage of point plotting is that to get a good idea about the shape of a graph, you may need to plot many points. With only a few points, you could badly misrepresent the graph. For instance, to sketch the graph of

$$
y=\frac{1}{30} x\left(39-10 x^{2}+x^{4}\right)
$$

you plot five points:

$$
(-3,-3), \quad(-1,-1), \quad(0,0), \quad(1,1), \quad \text { and } \quad(3,3)
$$

as shown in Figure P.3(a). From these five points, you might conclude that the graph is a line. This, however, is not correct. By plotting several more points, you can see that the graph is more complicated, as shown in Figure P.3(b).

Figure P. 3

TECHNOLOGY Graphing an equation has been made easier by technology. Even with technology, however, it is possible to misrepresent a graph badly. For instance, each of the graphing utility* screens in Figure P. 4 shows a portion of the graph of

$$
y=x^{3}-x^{2}-25 .
$$

From the screen on the left, you might assume that the graph is a line. From the screen on the right, however, you can see that the graph is not a line. So, whether you are sketching a graph by hand or using a graphing utility, you must realize that different "viewing windows" can produce very different views of a graph. In choosing a viewing window, your goal is to show a view of the graph that fits well in the context of the problem.

Graphing utility screens of $y=x^{3}-x^{2}-25$
Figure P. 4

[^0]\therefore REMARK Some texts denote the x-intercept as the x-coordinate of the point $(a, 0)$ rather than the point itself. Unless it is necessary to make a distinction, when the term intercept is used in this text, it will mean either the point or the coordinate.

Intercepts of a Graph

Two types of solution points that are especially useful in graphing an equation are those having zero as their x - or y-coordinate. Such points are called intercepts because they are the points at which the graph intersects the x - or y-axis. The point $(a, 0)$ is an \boldsymbol{x}-intercept of the graph of an equation when it is a solution point of the equation. To find the x-intercepts of a graph, let y be zero and solve the equation for x. The point $(0, b)$ is a y-intercept of the graph of an equation when it is a solution point of the equation. To find the y-intercepts of a graph, let x be zero and solve the equation for y.

It is possible for a graph to have no intercepts, or it might have several. For instance, consider the four graphs shown in Figure P.5.

No x-intercepts
One y-intercept
Figure P. 5

Three x-intercepts
One y-intercept

One x-intercept
Two y-intercepts

No intercepts

EXAMPLE 2 Finding \boldsymbol{x} - and \boldsymbol{y}-Intercepts

Find the x - and y-intercepts of the graph of $y=x^{3}-4 x$.
Solution To find the x-intercepts, let y be zero and solve for x.

$$
\begin{aligned}
x^{3}-4 x & =0 & & \text { Let } y \text { be zero. } \\
x(x-2)(x+2) & =0 & & \text { Factor. } \\
x & =0,2, \text { or }-2 & & \text { Solve for } x .
\end{aligned}
$$

Because this equation has three solutions, you can conclude that the graph has three x-intercepts:

$$
(0,0), \quad(2,0), \quad \text { and } \quad(-2,0) . \quad x \text {-intercepts }
$$

To find the y-intercepts, let x be zero. Doing this produces $y=0$. So, the y-intercept is

$$
(0,0) . \quad y \text {-intercept }
$$

(See Figure P.6.)

Intercepts of a graph
Figure P. 6

Figure P. 7

Origin symmetry
Figure P. 8

Symmetry of a Graph

Knowing the symmetry of a graph before attempting to sketch it is useful because you need only half as many points to sketch the graph. The three types of symmetry listed below can be used to help sketch the graphs of equations (see Figure P.7).

1. A graph is symmetric with respect to the \boldsymbol{y}-axis if, whenever (x, y) is a point on the graph, then $(-x, y)$ is also a point on the graph. This means that the portion of the graph to the left of the y-axis is a mirror image of the portion to the right of the y-axis.
2. A graph is symmetric with respect to the \boldsymbol{x}-axis if, whenever (x, y) is a point on the graph, then $(x,-y)$ is also a point on the graph. This means that the portion of the graph below the x-axis is a mirror image of the portion above the x-axis.
3. A graph is symmetric with respect to the origin if, whenever (x, y) is a point on the graph, then $(-x,-y)$ is also a point on the graph. This means that the graph is unchanged by a rotation of 180° about the origin.

Tests for Symmetry

1. The graph of an equation in x and y is symmetric with respect to the y-axis when replacing x by $-x$ yields an equivalent equation.
2. The graph of an equation in x and y is symmetric with respect to the x-axis when replacing y by $-y$ yields an equivalent equation.
3. The graph of an equation in x and y is symmetric with respect to the origin when replacing x by $-x$ and y by $-y$ yields an equivalent equation.

The graph of a polynomial has symmetry with respect to the y-axis when each term has an even exponent (or is a constant). For instance, the graph of

$$
y=2 x^{4}-x^{2}+2
$$

has symmetry with respect to the y-axis. Similarly, the graph of a polynomial has symmetry with respect to the origin when each term has an odd exponent, as illustrated in Example 3.

EXAMPLE 3 Testing for Symmetry

Test the graph of $y=2 x^{3}-x$ for symmetry with respect to (a) the y-axis and (b) the origin.

Solution

a. $y=2 x^{3}-x$ Write original equation.
$y=2(-x)^{3}-(-x)$ Replace x by $-x$.
$y=-2 x^{3}+x$ Simplify. It is not an equivalent equation

Because replacing x by $-x$ does not yield an equivalent equation, you can conclude that the graph of $y=2 x^{3}-x$ is not symmetric with respect to the y-axis.
b. $y=2 x^{3}-x$

Write original equation.
$-y=2(-x)^{3}-(-x) \quad$ Replace x by $-x$ and y by $-y$.
$-y=-2 x^{3}+x \quad$ Simplify.
$y=2 x^{3}-x$
Equivalent equation
Because replacing x by $-x$ and y by $-y$ yields an equivalent equation, you can conclude that the graph of $y=2 x^{3}-x$ is symmetric with respect to the origin, as shown in Figure P.8.

Figure P. 9

Two points of intersection Figure P. 10

EXAMPLE 4 Using Intercepts and Symmetry to Sketch a Graph

-. . \triangleright See LarsonCalculus.com for an interactive version of this type of example.
Sketch the graph of $x-y^{2}=1$.
Solution The graph is symmetric with respect to the x-axis because replacing y by $-y$ yields an equivalent equation.

$$
\begin{array}{rlrl}
x-y^{2} & =1 & \text { Write original equati } \\
x-(-y)^{2} & =1 & & \text { Replace } y \text { by }-y . \\
x-y^{2} & =1 & & \text { Equivalent equation }
\end{array}
$$

This means that the portion of the graph below the x-axis is a mirror image of the portion above the x-axis. To sketch the graph, first plot the x-intercept and the points above the x-axis. Then reflect in the x-axis to obtain the entire graph, as shown in Figure P.9.

TECHNOLOGY Graphing utilities are designed so that they most easily graph equations in which y is a function of x (see Section P. 3 for a definition of function). To graph other types of equations, you need to split the graph into two or more parts or you need to use a different graphing mode. For instance, to graph the equation in Example 4, you can split it into two parts.

$$
\begin{array}{ll}
y_{1}=\sqrt{x-1} & \text { Top portion of graph } \\
y_{2}=-\sqrt{x-1} & \text { Bottom portion of graph }
\end{array}
$$

Points of Intersection

A point of intersection of the graphs of two equations is a point that satisfies both equations. You can find the point(s) of intersection of two graphs by solving their equations simultaneously.

EXAMPLE 5 Finding Points of Intersection

Find all points of intersection of the graphs of

$$
x^{2}-y=3 \quad \text { and } \quad x-y=1
$$

Solution Begin by sketching the graphs of both equations in the same rectangular coordinate system, as shown in Figure P.10. From the figure, it appears that the graphs have two points of intersection. You can find these two points as follows.

$$
\begin{aligned}
y & =x^{2}-3 & & \text { Solve first equation for } y . \\
y & =x-1 & & \text { Solve second equation for } y . \\
x^{2}-3 & =x-1 & & \text { Equate } y \text {-values. } \\
x^{2}-x-2 & =0 & & \text { Write in general form. } \\
(x-2)(x+1) & =0 & & \text { Factor. } \\
x & =2 \text { or }-1 & & \text { Solve for } x .
\end{aligned}
$$

The corresponding values of y are obtained by substituting $x=2$ and $x=-1$ into either of the original equations. Doing this produces two points of intersection:
$(2,1)$ and $(-1,-2) . \quad$ Points of intersection

You can check the points of intersection in Example 5 by substituting into both of the original equations or by using the intersect feature of a graphing utility.

Mathematical Models

Real-life applications of mathematics often use equations as mathematical models. In developing a mathematical model to represent actual data, you should strive for two (often conflicting) goals: accuracy and simplicity. That is, you want the model to be simple enough to be workable, yet accurate enough to produce meaningful results. Section P. 4 explores these goals more completely.

EXAMPLE 6 Comparing Two Mathematical Models

The Mauna Loa Observatory in Hawaii has been measuring the increasing concentration of carbon dioxide in Earth's atmosphere since 1958.

The Mauna Loa Observatory in Hawaii records the carbon dioxide concentration y (in parts per million) in Earth's atmosphere. The January readings for various years are shown in Figure P.11. In the July 1990 issue of Scientific American, these data were used to predict the carbon dioxide level in Earth's atmosphere in the year 2035, using the quadratic model

$$
y=0.018 t^{2}+0.70 t+316.2 \quad \text { Quadratic model for 1960-1990 data }
$$

where $t=0$ represents 1960, as shown in Figure P.11(a). The data shown in Figure P.11(b) represent the years 1980 through 2010 and can be modeled by

$$
y=1.68 t+303.5 \quad \text { Linear model for 1980-2010 data }
$$

where $t=0$ represents 1960 . What was the prediction given in the Scientific American article in 1990? Given the new data for 1990 through 2010, does this prediction for the year 2035 seem accurate?

Solution To answer the first question, substitute $t=75$ (for 2035) into the quadratic model.

$$
y=0.018(75)^{2}+0.70(75)+316.2=469.95 \quad \text { Quadratic model }
$$

So, the prediction in the Scientific American article was that the carbon dioxide concentration in Earth's atmosphere would reach about 470 parts per million in the year 2035. Using the linear model for the 1980-2010 data, the prediction for the year 2035 is

$$
y=1.68(75)+303.5=429.5 . \quad \text { Linear model }
$$

So, based on the linear model for 1980-2010, it appears that the 1990 prediction was too high.

The models in Example 6 were developed using a procedure called least squares regression (see Section 13.9). The quadratic and linear models have correlations given by $r^{2} \approx 0.997$ and $r^{2} \approx 0.994$, respectively. The closer r^{2} is to 1 , the "better" the model. Gavriel Jecan/Terra/CORBIS

P. 1 Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Matching In Exercises 1-4, match the equation with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

1. $y=-\frac{3}{2} x+3$
2. $y=\sqrt{9-x^{2}}$
3. $y=3-x^{2}$
4. $y=x^{3}-x$

Sketching a Graph by Point Plotting In Exercises 5-14, sketch the graph of the equation by point plotting.
5. $y=\frac{1}{2} x+2$
6. $y=5-2 x$
7. $y=4-x^{2}$
8. $y=(x-3)^{2}$
9. $y=|x+2|$
10. $y=|x|-1$
11. $y=\sqrt{x}-6$
12. $y=\sqrt{x+2}$
13. $y=\frac{3}{x}$
14. $y=\frac{1}{x+2}$

Approximating Solution Points In Exercises 15 and 16, use a graphing utility to graph the equation. Move the cursor along the curve to approximate the unknown coordinate of each solution point accurate to two decimal places.
15. $y=\sqrt{5-x}$
16. $y=x^{5}-5 x$
(a) $(2, y)$
(b) $(x, 3)$
(a) $(-0.5, y)$
(b) $(x,-4)$

Finding Intercepts
In Exercises 17-26, find any intercepts.
17. $y=2 x-5$
18. $y=4 x^{2}+3$
19. $y=x^{2}+x-2$
20. $y^{2}=x^{3}-4 x$
21. $y=x \sqrt{16-x^{2}}$
22. $y=(x-1) \sqrt{x^{2}+1}$
23. $y=\frac{2-\sqrt{x}}{5 x+1}$
24. $y=\frac{x^{2}+3 x}{(3 x+1)^{2}}$
25. $x^{2} y-x^{2}+4 y=0$
26. $y=2 x-\sqrt{x^{2}+1}$

Testing for Symmetry In Exercises 27-38, test for symmetry with respect to each axis and to the origin.
27. $y=x^{2}-6$
28. $y=x^{2}-x$
29. $y^{2}=x^{3}-8 x$
30. $y=x^{3}+x$
31. $x y=4$
32. $x y^{2}=-10$
33. $y=4-\sqrt{x+3}$
34. $x y-\sqrt{4-x^{2}}=0$
35. $y=\frac{x}{x^{2}+1}$
36. $y=\frac{x^{2}}{x^{2}+1}$
37. $y=\left|x^{3}+x\right|$
38. $|y|-x=3$

Using Intercepts and Symmetry to Sketch a Graph In Exercises 39-56, find any intercepts and test for symmetry. Then sketch the graph of the equation.
39. $y=2-3 x$
40. $y=\frac{2}{3} x+1$
41. $y=9-x^{2}$
42. $y=2 x^{2}+x$
43. $y=x^{3}+2$
44. $y=x^{3}-4 x$
45. $y=x \sqrt{x+5}$
46. $y=\sqrt{25-x^{2}}$
47. $x=y^{3}$
48. $x=y^{2}-4$
49. $y=\frac{8}{x}$
50. $y=\frac{10}{x^{2}+1}$
51. $y=6-|x|$
52. $y=|6-x|$
53. $y^{2}-x=9$
54. $x^{2}+4 y^{2}=4$
55. $x+3 y^{2}=6$
56. $3 x-4 y^{2}=8$

Finding Points of Intersection In Exercises 57-62, find the points of intersection of the graphs of the equations.
57. $\begin{aligned} x+y & =8 \\ 4 x-y & =7\end{aligned}$
58. $3 x-2 y=-4$
$4 x+2 y=-10$
59. $x^{2}+y=6$
60. $x=3-y^{2}$ $y=x-1$
61. $x^{2}+y^{2}=5$
$x-y=1$
62. $x^{2}+y^{2}=25$

$$
-3 x+y=15
$$

Finding Points of Intersection In Exercises 63-66, use a graphing utility to find the points of intersection of the graphs. Check your results analytically.
63. $y=x^{3}-2 x^{2}+x-1$
$y=-x^{2}+3 x-1$
64. $y=x^{4}-2 x^{2}+1$
$y=1-x^{2}$
65. $y=\sqrt{x+6}$
$y=\sqrt{-x^{2}-4 x}$
66. $y=-|2 x-3|+6$
$y=6-x$

The symbol indicates an exercise in which you are instructed to use graphing technology or a symbolic computer algebra system. The solutions of other exercises may also be facilitated by the use of appropriate technology.
67. Modeling Data The table shows the Gross Domestic Product, or GDP (in trillions of dollars), for selected years. (Source: U.S. Bureau of Economic Analysis)

Year	1980	1985	1990	1995
GDP	2.8	4.2	5.8	7.4
Year	2000	2005	2010	
GDP	10.0	12.6	14.5	

(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form $y=a t^{2}+b t+c$ for the data. In the model, y represents the GDP (in trillions of dollars) and t represents the year, with $t=0$ corresponding to 1980.
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the GDP in the year 2020.
-•68. Modeling Data••••••••••••••••••

- The table shows the numbers of cellular phone subscribers
- (in millions) in the United States for selected years.
- (Source: CTIA-The Wireless)

Year	1995	1998	2001	2004	2007	2010
Number	34	69	128	182	255	303

(a) Use the regression capabilities of a graphing utility to find a mathematical model of the form $y=a t^{2}+b t+c$ for the data. In the model, y represents the number of subscribers (in millions) and t represents the year, with $t=5$ corresponding to 1995 .
(b) Use a graphing utility to plot the data and graph the model. Compare the data with the model.
(c) Use the model to predict the number
 of cellular phone subscribers in the United States in the year 2020.
69. Break-Even Point Find the sales necessary to break even ($R=C$) when the cost C of producing x units is $C=2.04 x+5600$ and the revenue R from selling x units is $R=3.29 x$.
70. Copper Wire The resistance y in ohms of 1000 feet of solid copper wire at $77^{\circ} \mathrm{F}$ can be approximated by the model
$y=\frac{10,770}{x^{2}}-0.37, \quad 5 \leq x \leq 100$
where x is the diameter of the wire in mils (0.001 in .). Use a graphing utility to graph the model. By about what factor is the resistance changed when the diameter of the wire is doubled?
71. Using Solution Points For what values of k does the graph of $y=k x^{3}$ pass through the point?
(a) $(1,4)$
(b) $(-2,1)$
(c) $(0,0)$
(d) $(-1,-1)$
72. Using Solution Points For what values of k does the graph of $y^{2}=4 k x$ pass through the point?
(a) $(1,1)$
(b) $(2,4)$
(c) $(0,0)$
(d) $(3,3)$

WRITING ABOUT CONCEPTS

Writing Equations In Exercises 73 and 74, write an equation whose graph has the indicated property. (There may be more than one correct answer.)
73. The graph has intercepts at $x=-4, x=3$, and $x=8$.
74. The graph has intercepts at $x=-\frac{3}{2}, x=4$, and $x=\frac{5}{2}$.
75. Proof
(a) Prove that if a graph is symmetric with respect to the x-axis and to the y-axis, then it is symmetric with respect to the origin. Give an example to show that the converse is not true.
(b) Prove that if a graph is symmetric with respect to one axis and to the origin, then it is symmetric with respect to the other axis.

HOW DO YOU SEE IT? Use the graphs of the two equations to answer the questions below.

(a) What are the intercepts for each equation?
(b) Determine the symmetry for each equation.
(c) Determine the point of intersection of the two equations.

True or False? In Exercises 77-80, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
77. If $(-4,-5)$ is a point on a graph that is symmetric with respect to the x-axis, then $(4,-5)$ is also a point on the graph.
78. If $(-4,-5)$ is a point on a graph that is symmetric with respect to the y-axis, then $(4,-5)$ is also a point on the graph.
79. If $b^{2}-4 a c>0$ and $a \neq 0$, then the graph of $y=a x^{2}+b x+c$ has two x-intercepts.
80. If $b^{2}-4 a c=0$ and $a \neq 0$, then the graph of $y=a x^{2}+b x+c$ has only one x-intercept.
Andy Dean Photography/Shutterstock.com

[^0]: *In this text, the term graphing utility means either a graphing calculator, such as the TI-Nspire, or computer graphing software, such as Maple or Mathematica.

